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Abstract:-A new block backstepping controller is proposed to solve the attitude stabilization problem for a 
quadrotor helicopter. The attitude kinematical model is obtained and translated into a MIMO nonlinear system 
with generalized uncertainties. Under the consideration of the coupling between the attitude angles, a nominal 
block backstepping controller is designed. The obtained controller is then augmented by a robust adaptive 
function to approximate the modeling errors and external disturbance. A nonlinear tracking-differentiator is 
applied to reduce computer explosion which is a ubiquitous problem in backstepping controllers. The closed-
loop system is proved to be stable and exponential convergent through constructing appropriate Lyapunov 
function. Simulation results in the presence of external momentary disturbances and parametric uncertainties 
are presented to corroborate the effectiveness and the robustness of the proposed strategy. 
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1 Introduction 

Quadrotor helicopter is a kind of vertical take-
off and landing (VTOL) multi-rotor unmanned 
aerial vehicles (UAV). In the last few years, the 
automatic flight control of quadrotor helicopter has 
been highlighted in a lot of papers [1]-[4]. 
Nevertheless, this kind of helicopter has a high 
nonlinear and time-varying behavior and it is 
constantly affected by aerodynamic disturbances. In 
addition, helicopters are usually models subject to 
unmodelled dynamics and parametric uncertainties. 
Therefore, it is a difficult work to model the system 
and design related autonomic flight controller. In 
order to achieve good performance in autonomous 
flight with high robustness with respect to external 
disturbances, some advanced nonlinear control 
methodologies have been applied extensively to the 
control of quadrotor, such as Feedback linearization 
[5], [6]and backstepping [7], [8]. Although feedback 
linearization techniques are widely used in the flight 
control law design, however, this method relies on a 
known model of the helicopter with precise 
parameters. Besides, all of the nonlinear terms are 
eliminated with this method, which limits its 
robustness.  

Backstepping is a recursive procedure that 
interlaces the choice of a Lyapunov function with 
the design of the feedback control. The advantage of 

this technique is that it can gain from the stabilizing 
nonlinear terms rather than eliminating them. 
Backstepping has been applied to a number of 
different design tasks [9]-[21]. The authors of [10] 
proposed the backstepping controllers for the 
rotational control of the quadrotor nonlinear systems. 
However, this work decoupled the rotational system 
into three single-input single-output (SISO) 
subsystems, and didn’t consider the uncertainties. In 
paper [11], the authors presented an adaptive 
backstepping controller to estimate and compensate 
the external disturbances. But also, only the scalar 
version of backstepping was used and the couple 
between the three attitude angles was neglected.  

In papers [16]-[19] the multi-input multi-output 
(MIMO) backstepping, also known as block 
backstepping are investigated and applied. Cao et al. 
[16] designed an adaptive block backstepping flight 
controller for a MIMO nonlinear missile system, but 
this method required the knowledge of the upper 
bounds of the unknown parameters. Chang [17] 
proposed a block backstepping controller for the 
MIMO perturbed systems to achieve asymptotic 
stability without the knowledge of the upper bounds 
of perturbations except those of the input 
uncertainties.  

However, the computing expansion problem 
exists in the backstepping technique. As the order of 
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the system increases, the implementation of 
backstepping becomes increasingly complex since 
that the command derivatives are needed to compute 
at each step of the design. The authors of [20] 
proposed the dynamic surface control method to 
solve the computing expansion problem. In this 
method, a low pass filter was introduced to cancel 
the repeated differentiations of the demands of the 
nonlinearities to avoid the complexity caused by 
expansion of the differential terms.  Farrell et al. [21] 
addressed a modification that obviates the need to 
compute analytic derivatives by introducing 
command filters in the backstepping design. 

In the paper, an adaptive block backstepping 
control strategy with robust function is proposed to 
the problem of controlling the attitude of a 
quadrotor helicopter described by the full nonlinear 
3-degree-of-freedom dynamics. Comparison to the 
methodologies mentioned above, this work 
considers the couples between the attitude angles 
and the uncertainties, and the nonlinear tracking-
differentiator developed in [22] is introduced to 
simplify the algorithm complexity.  

The paper is organized as follows. In Section 2 
the attitude dynamics of quadrotor are analyzed and 
the problem is formulated. Then the control 
architecture is presented in Section 3, including the 
block backstepping controller, the robust function 
and the tracking-differentiator. Section 4 represents 
the stability analysis. The simulation results are 
presented in Section 5, and then the conclusions are 
established in Section 6. 

 
2 Quadrotor Dynamics 

The main purpose of this paper is to design 
attitude controller for the quadrotor vehicle, so only 
the 3-degree-of-freedom attitude model is presented. 
 
2.1 Attitude Kinematics 

Given the quadrotor vehicle being a single rigid 
body, the rotational equations in the fixed body 
frame which is obtained from the Newton-Euler 
formalism, can be expressed as (1),   

0
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0

p r q p L
q r p q M
r q p r N

−       
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       −       

J J
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       (1) 

where , ,p q r represent the angular velocities in the 
body fixed frame, , ,L M N  represent the combined 
external moments in the body fixed 
frame, 3 3×∈RJ denotes the inertia matrix, the matrix 
denotes diagonal because of the symmetry of the 
quadrotor, so diag( , , )x y zJ J JJ = . 

The attitude kinematics equations can be 
obtained from the rotation relationships between the 
body fixed frame and the inertial frame as follows, 

1 sin tan cos tan
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0 sin sec cos sec

p
q
r

φ φ θ φ θ
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ψ φ θ φ θ
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





     (2) 

Here , ,φ θ ψ denote the roll angle, pitch angle and 
yaw angle respectively.  
 
2.2 Quadrotor Aerodynamics 

The modeling of aerodynamic for rotor UAV is 
very difficult, because the realistic aerodynamic of 
rotor is very complex both in theory and in 
formulism. Moreover, the rotors of the mini-
quadrotor helicopter are small, light and soft, so it is 
hard to describe the exact aerodynamics parameters 
of the rotors. Here, some minute moments act on the 
quadrotor are reduced, the unmodelled items are 
considered as external disturbance. It is convenience 
to design the control law, and it could ensure the 
reality of the system model at the same time by 
applying this approach. 

The main work of aerodynamics modeling is to 
analyze the external moments applied on the 
quadrotor. The moments include 

R G D d

R G D d

R G D d

L L L L L
M M M M M
N N N N N

= + + +
 = + + +
 = + + +

              (3) 

where the subscript , , ,R G D d represent the thrust 
moments, gyroscopic effects, drag moments and 
external disturbance moments, respectively. 

The moments produced by rotor thrust are 

( )
( )

2 2
2 4

2 2
3 1

2 2 2 2
1 2 3 4

( )LR

R R L

R
Q

lkL
M lk
N k

ω ω

ω ω

ω ω ω ω

 −   
   = = −   
     − + − 

M         (4) 

where Lk represent the lift coefficient which is 
related to the rotor area, rotor radius and air 
density, iω  represent the rotor rotate 
speed, l represent the vertical distance from motor 
shaft to the center of mass of the 
quadrotor, Qk represent the reaction torque 
coefficient. 

The gyroscopic effect is the additional torque, 
which is produced by the rotating rotors with high 
speed, when the quadrotor works, it can avoid pitch 
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or roll. The gyroscopic effects can be written as 
follows, 

0

G r

G G r

G

L j q
M j p
N

ω
ω

   
   = = −   
      

M                    (5) 

where rj  represents the rotational inertia of rotors, 
and 1 2 3 4( )ω ω ω ω ω= − + − + . 

The drag moments are expressed as, 
D Dx

D D Dy

D Dz

L k p
M k q
N k r

   
   = =   
      
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where ,Dx Dyk k and Dzk  are the triaxial air drag 
coefficients in the body fixed frame. 

As the area and rotational inertial of quadrotor 
researched in the paper are small, and the angular 
velocities are slow, so the gyroscopic effects and 
drag moments can be ignored. And then the external 
moments can be expressed as 

R L d

R M d

R N d

L L L
M M M
N N N

= + ∆ +
 = + ∆ +
 = + ∆ +

                  (7) 

where L G DL L∆ = + , M G DM M∆ = + ,

N G DN N∆ = +  denote the unmodelled terms which 
are ignored. From the expression above, the attitude 
kinematic equations can be written as (8), 
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2.3 State-space Modeling 
If we set the parameters as below, 
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then, in general form of MIMO nonlinear system 
state-space model, the equation (8) can be rewritten 
as follows, 

1 1 1 1 1 2

2 2 1 2 2 1 2

( ) ( )
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= +
= +
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where 
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1 1

2 20 2 2 1

3 1
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b b
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) 
here 20f  and 20b represent the nominal system, 

2∆f denotes the unmodelled terms and external 
disturbance, 2∆b denotes the system parametric 
perturbations. 
 
3 Attitude Controller Design 
 
3.1 Block Backstepping Control 
In order to obtain precise result, we introduce the 
new two three-dimensional error state 
vectors 1 2,x x  in the analysis, which can be 
expressed as below, 

1 1 1

2 2 2

d

d

= −
= −

x x x
x x x




                       (20) 

where 1dx and 2dx are the reference state vectors, if 
we substitute the expression (20) into the state-space 
equation (15), the error dynamic equations can be 
obtained. 

1 1 1 2 1d= + −x f b x x

                        (21) 

2 2 2 2d= + −x f b u x

                        (22) 
When the error equations are obtained, the 

design of block backstepping controller can be 
divided into two steps. 

 
Step 1  
According to the error subsystem equation (21), the 
expected virtual control law 2dx is defined as 

1
2 1 1 1 1 1( )d d k−= − − +x b f x x                 (23) 

where 1 0k > represents the designed constant. In 
subsystem (21), we apply the following Lyapunov 
function, 

T
1 1 1

1
2

V = x x                                 (24) 

if we take the virtual control variable 2dx  equation 
(23) into account, the time derivative of the 
Lyapunov function can be determined by  

T T
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2T
1 1 1 1 1
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( )
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−
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      (25) 

Hence, from the Lyapunov stability theory, we 
can find that the subsystem (21) is Lyapunov stable 
under the condition 2 0=x . 

 
Step 2 
The error subsystem equation (22) also can be 
rewritten as 

2 20 20 2 2 2

20 20 2

d

d

= + − + ∆ + ∆
= + − +

x f b u x f b u
f b u x Δ



 



            (26) 

where 2 2= ∆ + ∆Δ f b u  is the additional uncertain 
term for the generalized uncertainties. 

In the subsystem (22), the ideal control law can 
be expressed as  

1 T
20 2 2 20 1 1 2dk∗ −  − + + − + u = b x f b x x Δ        (27) 

where 2 0k >  is a designed constant. In the 
Lyapunov function 

T T
2 1 1 1 2

1 1
2 2

V = +x x x x                        (28) 

if we take the ideal control law (27) into account, 
the time derivative of Lyapunov function can be 
expressed as 

( )[ ] ( )
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    
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       

 

 

(29) 
Therefore, the whole system (15) will be 

Lyapunov stable if the control law is satisfied with 
equation (27). 

 
3.2 Robust Function 
From the equation (27), it can be found that there is 
an unknown uncertain term Δ in the ideal control 
law, so the control law is unrealistic. In this section, 
a robust function is proposed in order to avoid the 
effect of uncertainties. 

If uncertainties of the system are bounded and 
they are also governed by a nonnegative smooth 
function which is with an unknown constant. We 
can make the assumption as that there exists an 
unknown positive constant ρ , there also exists the 
relationship as (29), 

1 2( , )ρδ≤Δ x x                        (29) 
where 1 2( , )δ x x is a known nonnegative smooth 
function. 

The robust function η  is expressed as 
2 2

2 ρ̂ δ=η x                               
(30) 

where ρ̂ is the estimated value of the unknown 
constant ρ .The following adaptive law is proposed 
according to the unknown parameter, 
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2 3ˆ ˆkρ γ δ ρ= −x

                       (31) 
where γ and 3k represent the positive designed 
parameters, respectively, the sign ⋅  denotes 2-
norm. 

When introducing and analyzing of the robust 
function are finished, the ideal control law (27) can 
be rewritten as 

1 T
20 2 2 20 1 1 2dk−  − + + − + u = b x f b x x η          (32) 

 
3.3 Nonlinear Tracking-differentiator 
Control law equation (32) includes the differential 
item 2dx ，from the equilibrium (23) we know that 

2dx  is a function related to 1f , 1b , 1x ,  1dx , 1dx , 
the time derivative of 2dx  is given by 

2 2 2 2 2
2 1 1 1 1 1

1 1 1 1 1

d d d d d
d d d

d d

δ δ δ δ δ

δ δ δ δ δ
= + + + + 

   



x x x x x
x f b x x x

f b x x x  
(33) 

Hence, the calculation of 2dx  is very 
complicated, it will lead to computing expansion if 
we differentiate 2dx directly. In order to avoid this 
problem, the nonlinear tracking-differentiator is 
proposed and applied to calculate the estimated 
value of 2dx . 

The second-order fastest tracking-differentiator 
developed in [22] is adopted in this paper. This 
differentiator can avoid the noise amplification 
effect of traditional linear differentiator, and it can 
trace the input signal very fast. It can be expressed 
as below  

( )

1 2

2 2
2 1sign

2

z z

z z
z r z v t

r

=


  = − − + 
 





          (34) 

where r is a positive designed parameters, ( )v t is the 
input signal, the sign ( )⋅ represents sign function. 

In the design, 2dx is the input signal of the 
tracking-differentiator, the output signal part 1z  
is 2ˆ dx , which is the estimated value of 2dx . The state 
variable 2

z  is the approximate value of 2dx . 
Finally, the practical feedback control law can 

be given by 
1 T

20 2 2 20 1 1 2
ˆ

dk−  − + + − + u = b x f b x x η        (35) 

 
4 Stability Analysis 
The parametric estimation error can be defined as 

ˆρ ρ ρ= −                             (36) 

For whole closed-loop system, define the 
candidate Lyapunov function  

T T 2
1 1 2 2

1 1 1
2 2 2
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γ

= + +x x x x                  (37) 

the time derivative of V takes the form: 
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  
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    (38) 

If we put equation (36) and the identical 

equation 2 2 21 1 1ˆ ˆ
2 2 2

ρρ ρ ρ ρ− = − − +  into equation 

(38), the following expression is obtained, 
2T T 2 2 3

1 1 1 2 2 2 2 2

2
T T 23

1 1 1 2 2 2 2

2 23 3

T T 2 23 3
1 1 1 2 2 2

1

ˆ ˆ ˆ
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2 4 2

1 1ˆ
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2 4 2

0
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c V c
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ρ ρ
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ρ ρ
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≤ − − + − −
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 

− +
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where 

3
0 1 2min , ,

2
kc k k
γ

 
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 
,    23

1
1
4 2

kc ρ
γ

= + . 

When we finish the solving of inequation 
0 1V c V c≤ − + , the equation (40) will be obtained, 

( ) ( ) ( ) ( )

( )

1
0 0

0

1

0

0 exp 1 exp

0 0

cV t V c t c t
c

cV t
c

≤ − +  − −  

≤ + ∀ ≥
   (40) 

where ( )0V represent the initial value of ( )V t .The 
solution of (40) implies that the Lyapunov 
function ( )V t is bounded, i.e., all the signals in the 
close loop system are bounded. If we adjust the 
designed parameter to satisfy with the 
conditions 0 0c > and ( )0 1 0c c V≥ , and it will leads 

to 0V < . Thus, it can prove the system is Lyapunov 
stable and the errors are asymptotically converge to 
an arbitrarily small neighborhood of zero,  
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{ } ( ) ( ) 1
1 2

0

, , 0 cV V
c

ρ
 

∈ = ≤ + 
 

Ωx x X | X      (41) 

The converging speed and the domain of 
convergence are determined by the designed 
parameters 1 2 3, , ,k k k γ . 

 

5 Simulation Results 
In order to check and analyze the performances, the 
proposed control strategy is tested by simulations in 
the software of MATLAB. Besides, simulations 
comparing the control structure proposed above 
with the traditional backstepping approach are also 
performed. 

If we set the initial states of the quadrotor 
with [ ]T1 0.5,0.5,0.5=x , the nonnegative smooth 

function is 2 2sin cosδ = +x x . The control 
purpose is to stabilitate the helicopter at the origin in 
the fixed inertial frame, that is, [ ]T0,0,0d =x and 

1 0d =x . The sampling period is 2ms, the values of 
the model parameters and controller parameters in 
the simulations are presented in Table 1. 

 
Table 1 Parameters of the simulation model 

Model Parameters Controller 
Parameters 

/ ml  0.230 1
k  1 

2/ (kg m )xJ ⋅  0.008 2k  8 
2/ (kg m )yJ ⋅  0.008 3

k  2 

2/ (kg m )zJ ⋅  0.013 γ  10 

 
In order to verify the robustness of the proposed 

approach, the various uncertainties of quadrotor 
may be subjected in flight are considered, four 
simulation experiments are performed in the paper. 

 
5.1 Constant Moment Disturbance 
If we make the assumption that the quadrotor is 
subjected to persistent constant moment 
disturbances expressed as formula (42), the 
disturbances are added to the control inputs at 5, 10, 
15 seconds in the roll, pitch and yaw channel, 
respectively. The results obtained are shown in 
Fig.1and Fig.2. 

In Fig.1, it can be seen that, the two controllers 
both can control the quadrotor from the initial state 

to stable state. However, the convergence speed of 
the adaptive block backstepping control is little 
slower than the nominal backstepping control. 
Under the disturbance of constant moment, the 
steady state error of the attitude angle in the nominal 
backstepping control is about 0.09rad, while the 
steady state error in the adaptive block backstepping 
control with robust function is less than 0.006rad. 
These results indicate that the proposed control 
structure is more robust than the nominal block 
backstepping control under the condition of constant 
moment disturbance. 

From Fig.2 we can see that the fluctuations of 
angular velocities of adaptive backstepping are also 
smaller than the nominal backstepping. 

[ ]
[ ]
[ ]
[ ]

T

T

T

T

0,0,0 5s

1,0,0 5 10s

1,1,0 10 15s

1,1,1 15s

t

t

t

t

 <

 ≤ <= 

≤ <


≥

Δ          (42) 

 
Fig.1 Output angles with constant moment 
disturbance 
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Fig.2 Angular velocities with constant moment 
disturbance 

 
5.2 Transient Moment Disturbance 
In order to test the robustness of the quadrotor to 
wind gusts disturbance, the transient moment 
disturbances are added to the simulation model. The 
simulation results are shown in Fig.3 and Fig.4, the 
transient moment disturbances are given by 

[ ]
[ ]
[ ]

T

T

T

0,0,0 10s

1,1,1 10 12s

0,0,0 12s

t

t

t

 <
= ≤ <


≥

Δ         (43) 

 
Fig.3 Output angles with transient moment 

disturbance 

 
Fig.4 Angular velocities with transient moment 
disturbance 

In Fig.3, we can find that the output angles 
perturb when the disturbances occur, it also can be 
seen from the partial enlarged details that the 
instantaneous error of the roll angle with the 
nominal backstepping control is about 0.09rad, 
while the error with the adaptive backstepping 
control is only 0.007rad. These results demonstrate 
that the robustness of proposed control strategy is 
improved apparently compare to the nominal 
backstepping control with the transient moment 
disturbance when the quadrotor is stable.  

It is obvious that the angular velocities under 
nominal block backstepping control change 
obviously when the disturbances coming which is 
shown as Fig. 4. But the angular velocities under 
adaptive block backstepping control are not changed 
almost. 

 
5.3 Sine Moment Disturbance 
It is inevitably to encounter the persistent gusts of 
wind sometime when the helicopter flies in the sky, 
in order to make further investigations on the 
performance of the proposed control, the sine 
moment disturbances are added to the system for 
simulation of effects of the persistent gusts. 
Simulation results are given out in Fig.5 and Fig.6, 
the mathematic equation of the sine moment 
disturbances can be written as (44), 

Tsin( )[1,1,1]t=Δ                     (44) 
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Fig.5 Output angles with sine moment disturbance  

It can be observed from Fig.5 that the maximum 
roll angle error is about 0.07rad applying the 
nominal backstepping control. Although there are 
some errors in the robust adaptive block 
backstepping control, while the maximum error is 
only 0.005rad.  Moreover, the convergence speed is 
faster than the nominal traditional control. It is 
obvious that the proposed adaptive backstepping 
control structure is also robust when it is added low-
frequency sine disturbance moments. 

 
Fig.6 Angular velocities with sine moment 
disturbance 

And the convergence speed is faster than the 
nominal control. Moreover, the fluctuations of 
angular velocities are smaller than that using 
nominal block backstepping which illustrated as in 
Fig.6.  

 

5.4 System Parametric Perturbation 

 
Fig.7 Output angles with parameters perturb 

+50% 
Some parameters in the system may be 

inaccurate and some parameters also may change 
with time. In order to test the robustness of control 
with parameter perturbation, the +30％ uncertainty 
of the system matrix b  and the transient moment 
disturbance in (43) are considered in the simulation, 
the simulation results obtained are shown in Fig.7 
and Fig.8. 

In Fig.7, the output angles are quite similar to 
the case that with standard parameters of system, the 
instantaneous error enlarges 6.67% only when the 
transient disturbance exists. The results indicate that 
the proposed controller still presents robust to 
parametric perturbation. 

From the partial enlarged details of Fig. 8, we 
can find that the angular velocities of the two 
controllers are almost same. 
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Fig.8 Angular velocities with parameters perturb 
+50% 
 
6. Conclusions 

An adaptive block backstepping control strategy 
is proposed to solve the attitude stabilization 
problem of the quadrotor helicopter in the paper. 
Firstly, the full nonlinear three-degree-of-freedom 
attitude dynamics are described under consideration 
of internal uncertainties and external disturbances 
acting on all degrees of freedom. Then, the block 
backstepping controller with a robust adaptive 
function is proposed. Against the computing 
expansion problem, a second order nonlinear 
tracking-differentiator is applied into the controller. 
The stability of the close loop system is ensured 
according to the Lyapunov stable theory. Finally, 
the numerical simulation results illustrate the 
robustness and smoothness of the provided 
controller in the case of constant moment 
disturbance, transient moment disturbance, sine 
moment disturbance and system parametric 
Perturbation.  

As a future work we will implement this control 
strategy in a real quadrotor helicopter. A new 
vehicle is being built, which will include appropriate 
control hardware to compute control signals. 
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